Math 120 Calculus I

Final Answers
December 2016

Scale. [to be determined]

1. [22] Consider the function $f(x)=\frac{x}{1+x^{2}}$. Its derivative is $f^{\prime}(x)=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}$, and its second derivative is $f^{\prime \prime}(x)=$ $\frac{4 x^{3}-6 x}{\left(1+x^{2}\right)^{3}}$.
a. [3] What are the x-intercepts and y-intercepts of f ?

The only x-intercept is the origin and the y-intercept is also the origin. In other words, the graph of f only crosses either axis at the origin.
b. [3] What are the critical points for f ?

The numerator $1-x^{2}$ of the derivative f^{\prime} is 0 when $x=$ ± 1.
c. [3] What are the inflection points for f ?

The numerator $4 x^{3}-6 x$ of the second derivative $f^{\prime \prime}$ is 0 when $x=0, \pm \sqrt{3 / 2}$.
d. [4] Are there any vertical asymptotes? Are there any horizontal asymptotes?

There are no vertical asymptotes, but the x-axis is a horizontal asymptote since $\lim _{x \rightarrow \pm \infty} f(x)=0$.
e. [6] Sketch the graph of f. Show intercepts, critical points, inflection points, and asymptotes.

The curve looks like this, but it should be also annotated with the points mentioned above.

2. $[15 ; 5$ points each part] On limits. Evaluate each of the following limits in parts a and b if it exists, but if it doesn't then explain why.
a. $\lim _{x \rightarrow 0} \frac{\sin ^{2} 3 x}{5 x^{2}}$

One way to evaluate this limit is to rewrite it as

$$
\lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \frac{\sin 3 x}{3 x} \frac{9}{5}
$$

which equals $\frac{9}{5}$ since $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$.
You could also use L'Hôpital's rule since this limit is of the indeterminant form $0 / 0$. Then the limit is equal to

$$
\lim _{x \rightarrow 0} \frac{6 \sin 3 x \cos 3 x}{10 x}
$$

It's still of the form $0 / 0$, and another application of L'Hôpital's rule gives

$$
\lim _{x \rightarrow 0} \frac{6\left(3 \cos ^{2} 3 x-3 \sin ^{2} 3 x\right)}{10}
$$

which equals 1.8 .
b. $\lim _{x \rightarrow \infty} \sqrt{\frac{4 x^{3}-2 x}{9 x^{3}+1}}$

Since square roots are continuous, the value of this limit is the square root of the limit

$$
\lim _{x \rightarrow \infty} \frac{4 x^{3}-2 x}{9 x^{3}+1}
$$

which is $\frac{9}{4}$. You can show that by various methods including the theorem that the limit as $x \rightarrow \infty$ of a rational function whose numerator and denominator have the same degree is the quotient of the leading coefficients. Therefore, the answer is $\sqrt{4} 9=2 / 3$
c. Suppose that $f^{\prime}(x)=\sqrt{x^{2}+1}$. Use that information to evaluate

$$
\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}
$$

The limit is the definition of the derivative of $f^{\prime}(2)$, and that equals $\sqrt{5}$.
3. $[24 ; 6$ points each part] Differentiation. Do not simplify your answers. Use parentheses properly.
a. For $f(x)=x \ln x$, find $f^{\prime}(x)$.

Use the product rule.

$$
f^{\prime}(x)=1 \ln x+x(1 / x)=\ln x+1
$$

b. Evaluate $\frac{d}{d x} \tan ^{3}(2 x-\pi)$.

Use the chain rule twice. You'll get

$$
3 \tan ^{2}(2 x-\pi) \sec ^{2}(2 x-\pi) 2 .
$$

c. Let $f(t)=\frac{e^{t}+t^{2 / 3}}{1+\tan t}$. Find $f^{\prime}(t)$.

Use the quotient rule. You'll find $f^{\prime}(t)$ equals

$$
\frac{\left(e^{t}+\frac{2}{3} t^{-1 / 3}\right)(1+\tan t)-\left(e^{t}+t^{2 / 3}\right) \sec ^{2} t}{(1+\tan t)^{2}}
$$

d. Let $F(x)=\int_{4}^{x} \frac{t^{t}+\ln \left(t^{2}+1\right)}{1+\sqrt{t}} d t$. Find $F^{\prime}(x)$. (Hint: do not try to evaluate the integral.)

Use the version of the Fundamental Theorem of Calculus that tells you the derivative of the integral is the original function. Then

$$
F^{\prime}(x)=\frac{x^{x}+\ln \left(x^{2}+1\right)}{1+\sqrt{x}}
$$

4. [10] Determine the function $f(x)$ whose derivative is $f^{\prime}(x)=6 x^{2}-4 x+2$ and whose value at $x=1$ is $f(1)=9$.

Antidifferentiate $f^{\prime}(x)=6 x^{2}-4 x+2$ to determine that $f(x)=2 x^{3}-2 x^{2}+2 x+C$ for some value of C. Since $f(1)=9$, therefore $9=2-2+2+C$, so $C=7$. Therefore, $f(x)=2 x^{3}-2 x^{2}+2 x+7$.
5. [10] A cylindrical aluminum can is to be constructed to have a volume of 1000 cubic cm . Let h denote the height of the can and r the radius of the base. Recall that the volume of a cylinder with height h and radius r of the base is $V=\pi r^{2} h$, and the total surface area is $A=2 \pi r^{2}+2 \pi r h$. Determine the dimensions of the cylinder to minimize the surface area A of the can. Your final answer should indicate the values of r and h.

Start with the equations

$$
1000=V=\pi r^{2} h, \text { and } A=2 \pi r^{2}+2 \pi r h .
$$

Use the first to eliminate $h . h=\frac{1000}{\pi r^{2}}$, so the second equation becomes

$$
A=2 \pi r^{2}+\frac{2000}{r} .
$$

Compute the derivative of A with respect to r.

$$
\frac{d A}{d r}=4 \pi r-\frac{2000}{r^{2}}
$$

Find the critical points by setting that derivative to 0 and solving the resulting equation for r. That gives you

$$
r=\sqrt[3]{\frac{500}{\pi}}
$$

(which is about 5.42). That will minimize the surface area. The value for h corresponding to that r is $h=\frac{10000}{\pi(500 / \pi)^{2 / 3}}$.

If you wanted to, you could use a little algebra shows you that $h=2 r$, that is, the best shaped cylinder has the same height and diameter.
6. $[12 ; 6$ points each part $]$ Evaluate the following integrals. Note that the first one is an indefinite integral and the second one is a definite integral.
a. $\int\left(5 e^{x}+3 \cos x\right) d x$

The general form of the antiderivative of the integrand is $5 e^{x}+3 \sin x+C$.
b. $\int_{1}^{4}\left(x^{2}+\frac{1}{2 \sqrt{x}}\right) d x$

An antiderivative is $\frac{1}{3} x^{3}+\sqrt{x}$, so the value of the definite integral is

$$
\left(\frac{1}{3} x 4^{3}+\sqrt{4}\right)-\left(\frac{1}{3} x 1^{3}+\sqrt{1}\right)
$$

(which simplifies to 22).
7. [10] The graph of a function $f(x)$ is drawn below. Its graph consists of three line segments.

Determine the value of the integral $\int_{-1}^{4} f(x) d x$.
The region under the curve from -1 to 1 is a triangle of area 2 . The region under the curve from 1 to 2 is a rectangle of area 2 . The region under the curve from 2 to $\frac{10}{3}$ is $\frac{4}{3}$, and the region above the curve from $\frac{10}{3}$ to 4 is $\frac{1}{3}$. So the value of the integral is $2+2+\frac{4}{3}-\frac{1}{3}=5$.

