

Failures to have limits
 Math 120 Calculus I
 Fall 2015

We're primarily interested in limits that finding limits that exist. After all, every derivative is a limit. But to understand a concept in mathematics, it's important to know its boundaries, and for this concept, it's important to know some examples of limits that don't exist. That is, as x approaches $a, f(x)$ does not approach anything. When that happens, we'll say that the $\lim _{x \rightarrow a} f(x)$ does not exist.

One imporant way that limits don't exist is that they go off to infinity. For example, $\lim _{x \rightarrow 3} \frac{1}{(x-3)^{2}}$. As when x is close to 3 , either slightly greater than 3 or slightly less than 3 , the denominator $(x-3)^{2}$ is a very small positive number, so it's reciprocal is a very large positive number. We'll write $\lim _{x \rightarrow 3} \frac{1}{(x-3)^{2}}=\infty$ and say that the limit diverges to ∞. You can see that's what happens since the graph $y=f(x)$ is asymptotic to the vertical line $x=3$ getting closer nearer the top of the line.

A similar example is $\lim _{x \rightarrow 3} \frac{1}{x-3}$. When x is slightly greater than 3 , the denominator $x-3$ is a very small positive number, so its reciprocal is a very large positive number. But when x is slightly less than 3 , the denominator $x-3$ is slightly less than 0 , so its reciprocal is near $-\infty$. We'll write $\lim _{x \rightarrow 3} \frac{1}{x-3}= \pm \infty$ and say that the limit diverges to $\pm \infty$. The graph of this function is also asymptotic to the vertical line $x=3$, but this time on the left it's near the bottom of the line but on the right it's near the top of the line.

Some times there's a jump at $x=a$. That doesn't happen when the function is given by a single expression, but it can happen when the function is defined by cases. For example, if we define f by

$$
f(x)=\left\{\begin{array}{lll}
x^{2} & \text { if } & x<3 \\
2 x & \text { if } & x \geq 3
\end{array}\right.
$$

then there is a jump in the graph $y=f(x)$ at $x=3$. As x approaches 3 from the left, $f(x)=x^{2}$ approaches 9 . But as x approaches 3 from the right, $f(x)=2 x$ approaches 6 . We can say the "left limit" is 9 while the "right limit" is 6 . Since the number you get depends on the direction you're approaching 3 , the limit doesn't exist.

There are other ways that the limit might not exist. Consider the function $f(x)=\sin \frac{1}{x}$. The limit $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist. Imagine what happens as you let x approach 0 from the right. Its reciprocal $1 / x$ approaches $+\infty$. As that happens the sine of it goes through infinitly many cycles, 0 to 1 to 0 to -1 to 0 . That means $y=\sin \frac{1}{x}$ oscillates between -1 and 1 infinitely many times; it is not approaching any particular number.

Math 120 Home Page at http://math.clarku.edu/~ma120/

