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Unchanging quantities in algebra. You’ve used variables like x and y a lot in algebra
and other courses before coming to calculus, but we’re going to treat variables differently in
this course.

When you first started using the symbol x in algebra, it was an unknown. There weren’t
different values of it, just one unknown value and it was your job to figure out what it was.

For example, here’s a simple problem of that kind. Mary is three times as old as John. In
five years, Mary will be twice as old as John is. How old is John now? Here’s one solution:
let x be how old John is now. Then Mary is 3x years old. In five years John will be x + 5
years old while Mary will be 3x+ 5 years old. Since Mary will be twice as old as John then,
therefore 3x+ 5 = 2(x+ 5). Solving, x = 5.

Note how the variable didn’t vary. The value of x didn’t change at all.
In forumlas, like the volume V of a ball in terms of its ratius r, V = 4

3
πr3, the variables V

and r are fixed. One of them isn’t known and your job is to find the other, but the variables
don’t vary.

Changing quantities in calculus. In calculus all our variables do vary. We consider them
not with just one value but with many. Typically, the value of one variable depends on the
value of another. When that’s the case, and we don’t have a good reason for choosing other
letters for our variables, we’ll let y be the variable that depends on the value of the variable
x. Usually, then, x is our independent variable and y is our dependent variable.

When our variables have particular meaning, we’ll use other letters like in the formula
V = 4

3
πr3. Frequently, our independent variable will be time, and we’ll use t for that.

Sometimes it will be something else like p for price.
Here are a couple of typical situations we’ll consider, the first being where the independent

variable is time.
Consider a ball tossed vertically up in the air. Let t be how long since it’s tossed, and let

y be how high it is in the air. As time passes, the ball goes up, and later comes down. Not
only does value of y depend on the value of t, but we consider both to have lots of values.
As time t passes, y first increases, then y decreases. The rate of change of the height is its
velocity v. When the ball is going up, v is positive; when it’s coming down, v is negative.

Next consider the revenue that you get at a retail store for some item depending on the
price you set for that item. Let p be the price, and let R be how much money you get for
selling that item. Depending on the price p you set, you’ll get more or less revenue R. If p
is too large, no one will buy it, and R will be 0. If you set p to 0, people may take it away
from your store, but again R will be 0. In between, R will be positive, but it depends on p.
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Time doesn’t enter into this example. Instead, p is the independent variable. Like in the last
example, R and p take lots of values, but R depends on p.

The variables we take for the independent and dependent variables depend on the appli-
cation.

Functional notation. y = f(x).
For the longest time, from the 1500s when symbolic algebra was invented through the

1700s, variables were enough. If y depended on x, you could say that in words or express it
as a formula, like y = x sinx.

The notation itself is a useful one. If you have y = f(x) = x sinx, then you can us the
operation of substitution to evaluate y for different values of x. For example, when x = π

2
,

then y = f(π
2
) = π

2
sin π

2
= π

2
. Besides substituting values for x, you can also substitute

expressions. So, for instance, f(u+ v) = (u+ v) sin(u+ v) = (u+ v)(sinu cos v+ sin v cosu).
We’ll be doing that a lot in this course.

Mathematicians started using functional notation at the end of the 1700s. Giving a name,
f to the dependency of y on x allows us to thing of that dependency as a thing in itself. It
makes a noun, the function f , out of a verb “depends”, and it allows us to do things that we
couldn’t easily do otherwise.

We’re using the notation y = f(x) to say that x is the independent variable and y depends
on it. We’ll call the rate of change of y the derivative of f . We’ll use several notations for the
derivative. In functional notation, we’ll denote it f ′(x). If we’re just using variables, we may
denote it y′ and depend on context to know what the independent variable is. We’ll also use

Leibniz’ notation
dy

dx
or dy/dx which can be read as “the derivative of y with respect to x.”

So far, we’ve got two examples described in the previous paragraph.

Independent variable Dependentvariable Derivative

time t height y velocity v = dy/dt
price p revenue R dR/dp

We should interpret
dR

dp
in that second example. It’s the rate of change of the revenue when

you change the price. If it’s positive, then you’ll take in more money if you raise the price of
the item. When it’s negative, then you’ll take in less money if you raise the price of the item.

More examples. In order to understand better what calculus is about, we need some more
examples. We should identify (1) the independent variable, (2) the dependent variable, and
(3) the rate of change of the dependent variable. These often have common name.

Many examples have time t as the independent variable. As time passes, some quantity
changes. Our first example was the height of a ball thrown upward.

Another example is the distance a car has travelled along a highway. Time t is the
independent variable. Distance y = f(t) is the dependent variable; it’s measured by the
odometer of the car. Velocity v = f ′(t) is the rate of change of the dependent variable; it’s
measured by the car’s speedometer. The velocity, too, is a changing quantity, and as such
has its own rate of change called acceleration. Acceleration is the derivative of velocity, and
it’s the derivative of the derivative of distance, that is, the second derivative of distance, and
it’s denoted f ′′(t).
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Consider the flow of a river. In spring there’s a lot of water going down the river, but in
fall there’s not so much. Time, again, is the independent variable. You can measure the flow
of water at a certain point in the river, and it indicates how much water passes that point
in a unit of time (hours, for instance). The flow is already a derivative. It’s the derivative
of the total quantity of water that’s passed that point (since some initial time, for instance,
when measurements began). This is an example where the derivative of a quantity, the flow,
can be measured more easily then the quantity itself. In order to find the quantity, the flows
at each hour need to be added. That’s the process of integration.

We should look at some examples where time is not the independent variable.
Consider a log, one end of which has been in the water a long time, the other end not.

One end is heavily waterlogged, the other isn’t. Assume the log is the same diameter all
along to simplify the example. If you sliced the log, you would find that the sections weight
different amounts, more at the waterlogged end than at the other end. In other words, the
log is more dense at the waterlogged end than at the other end. You could measure density as
weight per inch, if your slices were one inch long. Density is a derivative. It’s the derivative
of weight with respect to distance. That statement needs more precision. Let x measure the
distance in inches from one end of the log, say the waterlogged end. Let y = f(x) be the
weight of the first x inches of the log. Then f ′(x) is the density of the log x inches from the
end. It’s the rate of change of the weight of the first x inches of the log.

A similar example that uses a different terminology is intensity of light. Suppose you
have a flat white board and a light source above one end of it. The board will have a lot of
light shining at one end of it, but little at the other end. The intensity of the light at a given
position x is a derivative like density was in the last example. If f(x) is the total illumination
on the first x inches of the board, then f ′(x) is intensity of light at position x.

Terms like rate, velocity, density, and intensity all indicate derivatives.

Uniform change. This is something you know about, and you don’t need calculus for it.
When the rate of change of the dependent variable y is always that same as the independent
variable x changes, you’ve got uniform change. For uniform change, the change in y is
proportional to the change in x.

For example, if you’re walking down the street at a constant velocity of 3 miles/hour, then
the distance travelled is proportional to the elapsed time, and the constant of proportionality
is 3 miles/hour. In 1 hour, you go 3 miles. In half an hour you go 1

2
times 3, or 1.5 miles.

And so forth. For uniform motion, distance = rate times time.
The ancient Greek mathematicians understood uniform change well.
Autolycus of Pitane (ca. 360 BCE–ca. 290 BCE) studied the circular uniform motion of

stars in the heavens. He said an object moved uniformly if it traversed equal distances in
equal times. That means that for each fixed time period, the object moves the same distance.

Archimedes (ca. 287 BCE–ca. 212 BCE) used this definition to prove that an object
moving uniformly traverses distances proportional to times. That means that the distance x
traversed in a time interval of length t is proportional to the distance y traversed in a time
interval of length s:

x

y
=
t

s
.

Note that in this statement there is no mention of velocities, only of distances and times. The
ancient Greeks accepted ratios of two quantities as long as they were of the same kind. Here
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we have the ratio of two distances equal to the ratio of two time intervals. But the ancient
Greeks did not accept mixed ratios, for instance the ratio of a distance to a time.

Once mixed ratios were accepted, the above proportion could be written in the alternate
form

x

t
=
y

s
.

We interpret that as saying the velocity x/t during the first time interval equals the velocity
y/s during the second time interval. In other words, an object moves uniformly when it has
a constant velocity. The modern formula for uniform motion says that the distance traveled
equals the product of the rate (or velocity) and the elapsed time.

Unfortunately, they didn’t understand nonuniform motion. In order to deal with the
motion of the planets, they made all motions compounded out of uniform circular motions.
And although that made their astronomy complicated, it was still computable. The Ptolemaic
planetary system was made of dozens of circles with planets revolving around the earth each
compounded of several uniform circular motions. Even when Copernicus used the sun as the
center of his planetary system in the early 1500s he still used compounded circular motions.

It wasn’t until Kepler used nonuniform motion in the early 1600s that compounded uni-
form circular motion became unnecessary.

Nonuniform change. This is what calculus deals with. For nonuniform motion, the rate
of change isn’t constant.

If an object moves fast sometimes and slow other times, that’s nonuniform motion. A
ball tossed in the air is nonuniform.

Sales revenue depending on price is non uniform, too, since when you first increase the
price starting at 0, the revenue increases fast, then increases slower, then decreases until
eventually the revenue reaches 0. The rate of change of revenue with respect to price is not
constant. Another way of saying that is that the change in revenue is not proportional to the
change in price. Sometimes it’s positive, sometimes it’s negative.

The ancient Greek mathematicians did not study nonuniform change. But by the 1300s
scholars were comfortable with velocity, the rate of change of a changing quantity. They used
the term velocity in a more general way than we do now. We use it as a the rate of change of
an object that moves over time. For them, the dependent variable didn’t have to be distance
and the independent variable didn’t have to be time; nonetheless, for purposes of exposition,
let’s limit ourselves to an object that moves over time.

They were trying to understand nonuniform motion, that is, when the velocity is not
constant. The problem was that velocity is only defined under uniform motion. What is
velocity if the motion is not uniform?

Four of these scholars at Merton College in Oxford University—Thomas Bradwardine,
William Heytesbury, Richard Swineshead, and John Dumbleton—studied nonuniform motion
in the first half of the 1300s. Even though they couldn’t precisely define velocity, they worked
with velocities as if they were real quantities. Furthermore, they understood when the velocity
was changing, it had a rate of change, the acceleration. (Or deceleration if the velocity was
decreasing. They didn’t know about negative numbers.)

The Merton mean speed theorem. One of their discoveries about a certain nonuniform
motion is called the Merton Mean Speed Theorem. It says that if an object is moving with
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a constant acceleration, then the distance it travels is the same distance it would travel if
it were moving at a constant velocity, that velocity being the average of its initial and final
velocity. This happens to be the motion of a body in free fall, but there’s no indication that
these Merton scholars knew that. That result was something Galileo (1564–1642) discovered
much later.

We’ll look at one of the Merton scholar’s proofs of this mean speed theorem in class.

Oresme’s Fundamental Theorem of Calculus Nicole Oresme (ca. 1323–1382) was at
the University of Paris and expanded the analytic study of changing quantities. He had
a graphical interpretation very similar to the modern graph y = f(x) of a function in the
(x, y)-plane, although analytic geometry and coordinates were yet to be developed by Fermat
and Descartes in the 1600s.

A B

C

D

E

F

He represented time as a line, much as Aristotle had done long before, so that instants in
a time interval were represented by points on a horizontal line segment AB, which he called
the longitude. Given a moving object, at each instant in time E that moving object has a
velocity, and he represented that velocity by a vertical line segment EF proportional to the
velocity; each vertical line segment he called a latitude. These latitudes together formed a
plane region ABDC, which he called a form, bounded on the bottom by the original longitude
AB, on the left by the initial latitude AC representing the initial velocity,on the right by the
final latitude BD representing the final velocity, and on the top by the curve CFD which he
called the summit curve. He then argued that the area of that form ABDC is proportional
to the distance traveled.

Oresme made the various lengths proportional to distances or times since he thought (as
the ancient Greeks did) that they’re different kinds of things, but we would probably use the
language of equality: we would make length of the longitude equal the elapsed time, and the
length of a latitude equal the velocity at that instant.

We can write his result using Leibniz’ notation as∫ b

a

f ′(x) dx = f(b) − f(a).

In the 1300s there was no symbolic algebra at all—no equal sign, no minus sign, and no
variables.

Oresme gave examples of this principle and used it to prove the Merton mean speed
theorem.
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C D

Here’s the form for uniform motion. Since the velocity is constant for uniform motion, all
the latitudes are equal, so the form has a horizontal summit, that is, the form is a rectangle.
The distance traveled is that velocity times the elapsed time, but the area of the rectangle is
also the velocity (length of the latitudes) times the elapsed time (length of the longitude).

A B

C

D

Next, consider an object moves in a series of uniform motions. Over the first time interval,
it has one velocity, over the second time interval a second velocity, and so forth. The form is
made of a first rectangle, a second rectangle just to its right, and so forth. The area of the
form is the sum of the areas of the rectangles, but the area of each rectangle is the distance
traveled over the corresponding time interval, so the area of the form is the total distance
traveled.

Finally, suppose that the object has a nonuniform motion. The velocity is not constant
anywhere, but changes. The form has a curve at the top. There are a couple of ways to be
convinced that this principle (FTC) applies in this case also.

One argument is to employ some kind of concept of limiting approximations. Here’s
one argument of that type. Divide the latitude into small subintervals and assume that the
velocity during each subinterval is constant, say the actual velocity at some instant in that
subinterval. That gives the motion as described in the previous case, so the total area of
the rectangles is the distance traveled for that motion. Since the velocity for that motion is
close to the velocity of the original nonuniform motion, therefore the area of the curved form
is approximately the distance traveled for that nonuniform motion. Some kind of limiting
argument is needed to complete the argument. (Methods of this sort were used later by
Fermat, Newton, Riemann, and Darboux.)
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An alternate argument for FTC relies on a different interpretation of motion. Aristotle
had said that motion takes place over an interval. So velocity is defined over an interval of
time rather than at a point in time. One interpretation of that is that even for nonuniform
motion, velocity is constant over intervals, although they are very short intervals. Then the
motion actual is a series of uniform motions and the previous case already does the general
case. (This is very similar to Leibniz’ approach to motion where the subintervals of constant
velocity are infinitesimals.)

Oresme’s proof of the Merton mean speed theorem. Oresme used this principle to
prove the Merton mean speed theorem. Suppose that an object undergoes constant acceler-
ation. Then its velocity increases (or decreases) at a constant rate. Therefore the summit
line of the form is a slanted straight line. (The complete argument that it’s a straight line
involves similar triangles.) Thus, the form is a trapezoid ABDC with vertical parallel sides
AC and BD.

A B

C

D

E F

But the area of this trapezoid ABDC is the same as the area of a rectangle ABFE on the
same base but whose height AE = BF is the average height of the left and right sides of the
trapezoid. Thus the distance traveled under constant acceleration is the same as the distance
traveled by an object going a constant velocity, that being the average of the initial and final
velocities.

Math 120 Home Page at http://math.clarku.edu/~ma120/
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