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There are two aspects of the definition that I want to emphasize. First, the degree of
formality we use to make the definition. We’ll start with an informal definition, then clarify
and formalize it.

The second point is more technical. What should be the definition when the function is
negative? We’ll see, but to begin with, we’ll only consider positive functions.

The integral as an area under a curve. Let f be a nonnegative function defined on an
interval [a, b], that is, for x ∈ [a, b], f(x) ≥ 0. We define the integral of f over the interval
[a, b] to be the area of the region above the x-axis, between the lines x = a and x = b, and
below the curve y = f(x). The notation we use for this integral is due to Leibniz∫ b

a

f(x) dx

To the degree that we understand what that area is, we understand integrals. This
definition was sufficient for a long time as the definition of integrals, but when the concept of
function was broadened in the 18th and 19th centuries, it became clear that a more precise
definition was needed. There are strange functions (like the characteristic function of the
rational numbers) where our preconceived notions of area don’t apply. One solution to the
problem was to use rectangular approximations.

Rectangular approximations. For a rectangular approximation, partition the interval
[a, b] into subintervals. If we partition it into n parts, the first subinterval goes from a to
some number x1, the next from x1 to some number x2, and so forth. It makes the notation
come out nicer if we let x0 equal a and xn equal b.

a = x0 x1 x2 x3 xn = b
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We’ll use the symbol P stand for the whole partition, that is,

P = {x0, x1, . . . , xn}

where a = x0 < x1 < · · · < xn = b. Above each subinterval [xk−1, xk] draw a rectangle
whose height is the value of the function somewhere on that interval, that is, let the height
be yk = f(ck) where ck is some number in [xk−1, xk]. That rectangle has area yk(xk − xk−1).
The width of that rectangle can be denoted ∆xk = xk − xk−1.

The sum of the areas of these rectangles gives an estimate to the area under the curve.
That sum, called a rectangular estimate or Riemann sum, is

n∑
k=1

yk∆xk =
n∑

k=1

yk(xk − xk−1) = y1(x1 − x0) + y2(x2 − x1) + · · ·+ yn(xn − xn−1)

There are lots of these rectangular estimates. Some will be close to the area under the
curve, some will not. The norm of P , denoted ‖P‖ is one measure of how good a partition
P is. It’s defined to be the largest width of any of the subintervals in P .

Riemann integrals and integrability. Riemann defined the value of an integral to be
the limit of the Riemann sums as the norms of the partition approaches 0. Symbolically,∫ b

a

f(x) dx = lim
‖P‖→0

n∑
k=1

f(ck)∆xk.

More precisely,
∫ b

a
f(x) dx = J means for each ε > 0, there exists a δ > 0 so that for each

partition P with ‖P‖ < δ, and each choice of ck ∈ [xk−1, xk],∣∣∣∣∣
n∑

k=1

f(ck) ∆xk − J

∣∣∣∣∣ < ε.

Should that limit not exist, then the function is said to be nonintegrable.
In all cases where the area under the curve is well understood, Riemann’s definition agrees

with that area. In some cases, like the characteristic function of the rational numbers, the
limit doesn’t exist, and those functions are nonintegrable.

Upper and lower rectangular estimates and Darboux’s definition. An upper rect-
angular estimate occurs when the values yk are chosen so that the they’re greater than or
equal to all values of f(x) on the corresponding intervals [xk−1, xk]. In that case the union of
the rectangles covers all the area under the curve. Therefore, each upper rectangular estimate
is greater than or equal to the area of under the curve.

Likewise, a lower rectangular estimate occurs when the values yk are chosen so that the
they’re less than or equal to all values of f(x) on the corresponding intervals [xk−1, xk]. And
in that case, the union of the rectangles is inside the area under the curve. Therefore, each
lower rectangular estimate is less than or equal to the area under the curve.

Darboux defined the integral

∫ b

a

f(x) dx in terms of upper and lower rectangular esti-

mates. If there is only one number which is both less than or equal to all upper rectangular
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estimates and greater than or equal to all lower rectangular estimates, then he defined the
integral to be that number.

Darboux’ and Riemann’s definitions are equivalent. That is, a function f has a Riemann
integral over an interval [a, b] if and only if it has a Darboux integral over that interval, in
which case the two integrals have the same value.

An advantage to Darboux’ definition is that it does not explicitly involve limits.

Integrable functions. The functions we’re interested in are all integrable. We won’t prove
the following three theorems, but they show that many functions are integrable.

Theorem. Continuous functions are integrable. In particular, differentiable functions,
being continuous, are integrable.

Theorem. Bounded functions which are continuous except at finitely many discontinuities
are integrable.

Theorem. Bounded monotone functions (either increasing or decreasing) are integrable.

Negative functions and signed area. Riemann’s definition also gives a definition for the
case when a function is negative, or when it’s sometimes positive and sometimes negative.

If f(ck) is negative, then f(ck)(xk − xk−1) is also negative. We can interpret that as a
“signed area” of the rectangle which is the negation of the actual area of the rectangle.

When f is a negative function, then all the rectangles in a rectangular approximation are
below the x-axis, so they all contribute the negations of their areas to the Riemann sum.
Thus, the resulting integral has a negative value, the negation of the area below the x-axis
and above the curve y = f(x) and between the vertical lines x = a and x = b.

When f is sometimes positive and sometimes negative, then the areas above the x-axis
are counted positively, while the areas below the x-axis are counted negatively.

Thus, we can say integrals give signed areas in general.

Math 121 Home Page at http://math.clarku.edu/~ma121/
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