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Summary of the exponential model. Back a
while ago we discussed the exponential population
model. For that model, it is assumed that the rate

of change
dy

dt
of the population y is proportional

to the current population. If r is the constant of
proportionality, that’s the exponential differential
equation

dy

dt
= ry

and that has the general solution

y = Aert

where A is the initial population y(0). Rather than
using the base e for exponentiation, any other con-
venient base b can be used

y = Abst

where s =
r

ln b
.

There are many assumptions of this exponen-
tial model. In particular, it is assumed that there
are unlimited resources and there is no competition
within the population.

More reasonable models for population growth
can be devised to fit actual populations better at
the expense of complicating the model.

The logistic model. Verhulst proposed a model,
called the logistic model, for population growth in
1838. It does not assume unlimited resources. In-
stead, it assumes there is a carrying capacity K for
the population. This carrying capacity is the stable
population level. If the population is above K, then

the population will decrease, but if below, then it
will increase.

For this model it is assumed that the rate of

change
dy

dt
of the population y is proportional to the

product of the current population y and K − y, or
what is the same thing, proportion to the product
y(1 − y/K). That gives us the logistic differential
equation

dy

dt
= ry(1− y/K).

Here, r is a positive constant. Note that when

y < K ,
dy

dt
is positive, so y increases, but when

y < K, the derivative is negative, so y decreases.
We can solve this differential equation by the

method of separation of variables. First, separate
the variables to get

1

y(1− y/K)
dy = r dt

and integrate∫
1

y(1− y/K)
dy =

∫
r dt.

Of course,

∫
r dt = rt + C, but what about the

integral on the left side of the equation?
For that, we’ll need the method of partial frac-

tions. Write
1

y(1− y/K)
as the sum of two simpler

rational functions:

1

y(1− y/K)
=

A

y
+

B

1− y/K

where A and B are coefficients yet to be deter-
mined. Clear the denominators to get the equation

1 = A(1− y/K) + By = A− A

K
y + By

from which it follows that A = 1 and B = 1/K.
Thus,

1

y(1− y/K)
=

1

y
+

1/K

1− y/K
=

1

y
+

1

K − y
.

1



Therefore,∫
dy

y(1− y/K)
=

∫
dy

y
+

∫
dy

K − y

= ln y − ln |K − y|

= ln

∣∣∣∣ y

y −K

∣∣∣∣ .
Now that we’ve integrated the left side of the

equation, we can continue

ln

∣∣∣∣ y

y −K

∣∣∣∣ = rt + C

Next, the application of a little algebra gives us

y =
K

1 + Ae−rt

where A is a constant.
The graph of this function is asymptotic to the

y-axis on the left, asymptotic to the line y = K on
the right, and symmetric with respect to the point
where y = K/2, which is an inflection point. To its
left, the graph is concave upward, but to its right,
concave downward.

Here’s the graph of for K = 1, A = 1, and r = 1,
so that

y =
1

1 + e−t
.
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